Information Antifungal Therapy - Biology Antifungal Therapy - Biology

We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Learning Objectives

  • Explain why antifungal therapy is becoming less successful in public health

Just like antibiotics cure bacterial infections, antifungal medications save lives by curing dangerous fungal infections. And just like some bacterial infections are resistant to antibiotics, some fungi no longer respond to the antifungal medications that are designed to cure them. This emerging phenomenon is known as antifungal resistance, and it’s primarily a concern for invasive infections with the fungus Candida.

Although antibiotic-resistant bacterial infections are a widely-recognized public health threat, less is known about the effects of antifungal resistance and the burden of drug-resistant fungal infections. This highlights the need for an improved understanding of the reasons for their emergence, heightened awareness among medical and public health communities about these infections, and greater attention to methods that can be used to prevent and control them.

The Problem

Invasive fungal infections cause substantial morbidity and mortality and are a costly, common problem in healthcare settings. The fungus Candida is the most common cause of healthcare-associated bloodstream infections in the United States.[1] Each case of Candida bloodstream infection (also known as candidemia) is estimated to result in an additional 3 to 13 days of hospitalization and $6,000 to $29,000 in healthcare costs.[2]

What’s also concerning is that some types of Candida are becoming increasingly resistant to first-line and second-line antifungal medications, namely, fluconazole and echinocandins (anidulafungin, caspofungin, and micafungin). Approximately 7% of all Candida bloodstream isolates tested at CDC are resistant to fluconazole, most of which are Candida glabrata.[3],[4] CDC’s surveillance data indicate that the proportion of Candida isolates that are resistant to fluconazole has remained fairly constant over the past twenty years.[5],[6],[7] Echinocandin resistance, however, appears to be on the rise, especially among Candida glabrata. CDC’s surveillance data indicate that up to 8% of Candida glabrata isolates in 2014 may not be susceptible to echinocandins; this proportion nearly doubled from 4% in 2008. This is especially concerning as echinocandins are the mainstay of treatment for Candida glabrata, which already has high levels of resistance to fluconazole.[8]

The stable yet substantial rates of fluconazole resistance and the emergence of echinocandin resistance are concerning because echinocandins are typically used to treat infections caused by C. glabrata, the species that’s most often associated with fluconazole resistance. For multi-drug resistant Candida infections (those that are resistant to both fluconazole and an echinocandin), the few remaining treatment options are expensive and can be toxic for patients who are already very sick. Not surprisingly, there is growing evidence to suggest that patients who have drug-resistant candidemia have poorer outcomes than patients who have candidemia that’s susceptible to antifungal medications.[9],[10] Overall, antifungal resistance is still relatively uncommon, but the problem will likely continue to evolve unless more is done to prevent further resistance from developing and prevent the spread of these infections.

The Cause

Some species of fungi are naturally resistant to certain types of antifungal medications. Other species may be normally susceptible to a particular type of medication, but develop resistance over time as a result of improper antifungal use—for example, dosages that are too low or treatment courses that aren’t long enough.[11],[12] Some studies have indicated that antibacterial medications may also contribute to antifungal resistance; this could occur for a variety of reasons, one of which is that antibacterials reduce bacteria in the gut and create favorable conditions for Candida growth.[13] It’s not yet known if decreasing the use of all or certain antimicrobial agents can reduce Candida infections, but appropriate use of antibacterial and antifungal agents is one of the most important factors in fighting drug resistance.

What can be done

Antifungal resistance is becoming increasingly recognized, particularly for Candida. Everyone has a role in preventing Candida infections and reducing antifungal resistance.

  • CDC is:
    • Tracking trends in antifungal resistance through the Emerging Infections Program by conducting multi-center candidemia surveillance and performing species confirmation and antifungal susceptibility testing on Candida bloodstream isolates.[14], [15]
    • Using genetic sequencing and developing new laboratory tests to identify and understand specific mutations associated with antifungal resistance in Candida.
  • Hospital executives and infection control staff can:
    • Assess antifungal use as part of their antibiotic stewardship programs.
    • Ensure adherence to guidelines for hand hygiene, prevention of catheter-associated infections, and environmental infection control.
  • Doctors and other hospital staff can:
    • Prescribe antifungal medications appropriately.
    • Document the dose, duration, and indication for every antifungal prescription.
    • Stay aware of local antifungal resistance patterns.
    • Participate in and lead efforts within your hospital to improve antifungal prescribing practices.
    • Follow hand hygiene and other infection control measures with every patient.
  • Hospital patients can:
    • Be sure everyone cleans their hands before entering your room.
    • If you have a catheter, ask each day if it is necessary.

6 Most Effective Natural Antifungals (and how to use them)

Overview of the most powerful natural antifungals and how to use internally and externally to resolve common, non-serious fungal and yeast infections.

Fungal infections are an increasingly common problem today with a high sugar, refined carbohydrate diet a primary culprit. The modern diet serves as a perpetual disruption to beneficial gut bacteria which make up the bulk of human immunity.

The overuse of antibiotics can also be a contributing factor as it gives the normally harmless strains of Candida that live inside the gut and on the skin the opportunity to grow out of control and invade deep into body tissues.

Is Cancer a Fungus? A New Theory

This video and chapter offers crucial information about the relationships between cancer and infectious threats that every cancer patient and their family must be aware of. The truth that we must stare down is that cancer and infections cannot be separated from each other.

Cancer—always believed to be caused by genetic cell mutations—can in reality be caused by infections from viruses, bacteria, and fungi. &ldquoI believe that, conservatively, 15 to 20% of all cancer is caused by infections however, the number could be larger—maybe double,&rdquo said Dr. Andrew Dannenberg, director of the Cancer Center at New York-Presbyterian Hospital/Weill Cornell Medical Center. Dr. Dannenberg made the remarks in a speech in December 2007 at the annual international conference of the American Association for Cancer Research.

Whether caused by infections or not, once cancerous conditions are well underway the weakening of the immune system and the battle that ensues between the good guys and the bad is cheered on by hordes of infectious agents that increase in density, power and form as a patient&rsquos cancers get worse.

Cancer also involves inflammation, acid pH, low oxygen conditions accompanied by low CO2 levels, lower core body temperatures as well as nutritional deficiencies and high levels of tissue and cellular toxicity with heavy metals, chemicals and radiological exposure.

When the body&rsquos (immune system) weakens we get sick from one of a host of viruses, bacteria and fungi that already live within us but are dormant. Change pH, oxygen, cell voltage and hydration levels and these pathogens are ready to jump all over our blood streams and tissues.

Cancer cells love the conditions that healthy cells abhor. Same goes for all infectious agents. It is impossible to be dying of cancer and not be dying of infections and nutritional deficiencies at the same time!

Given enough time, cancer will develop whenever there is a proliferation of damaged cells. When cells are damaged, when their cell wall permeability changes, when toxins and free radicals build up, when the mitochondria lose functionality in terms of energy ATP production, when pH shifts strongly to the acidic, and when essential nutrients are absent, cells eventually, or sometimes quickly, decline into a cancerous condition.
We can see that when a person has cancer they are literally rotting inside and dying from the loss of function, gathering infectious forces, and losing strength from malnutrition as the cancer cells eat us out of house and home.

Science Daily reports, &ldquoWith infectious diseases, it is often not the pathogen itself, but rather an excessive inflammatory immune response (sepsis) that contributes to the patient&rsquos death, for instance as a result of organ damage. On intensive care units, sepsis is the second-most common cause of death worldwide. In patients with a severely compromised immune system specially, life-threatening candida fungal infections represent a high risk of sepsis.&rdquo

Credit: Image courtesy of Medical University of Vienna

&ldquoThe working group led by Karl Kuchler in the Christian Doppler Laboratory for Infection Biology (Max. F. Perutz Laboratories at the Vienna Biocenter Campus) has now deciphered the molecular causes of life-threatening inflammatory reactions that are triggered by fungal infections: two highly aggressive types of phagocytes in the immune system (neutrophils and inflammatory monocytes), which however also have a high potential for collateral destruction, mediate the inflammatory reaction during an infection with candida. Certain interferons, the messenger substances used by the immune system, which are excreted during fungal infections, stimulate the influx of immune cell types to infected organs and lead to sepsis.&rdquo

&ldquoWe have been able to demonstrate for the first time that the targeted blockade of this immune response with inflammation-inhibiting drugs can significantly reduce candida sepsis and therefore mortality,&rdquo says Karl Kuchler, who used an anti-inflammatory substance in the study.[1]

Science Daily said, &ldquoInfectious diseases are the world&rsquos number-one cause of death, with pathogenic fungi being responsible for extremely dangerous infections. Worldwide, more than €6 billion are spent each year on anti-fungal medications, and the total costs of the medical treatment of infectious diseases caused by pathogenic fungi are estimated in the order of hundreds of billions of Euros.&rdquo

Cancer cells and pre-cancerous cells are so common that nearly everyone by middle age or old age is riddled with them, said Dr. Thea Tlsty, a professor of pathology at the University of California, San Francisco. That was discovered in autopsy studies of people who died of other causes, with no idea that they had cancer cells or precancerous cells. They did not have large tumors or symptoms of cancer. &ldquoThe really interesting question,&rdquo Dr. Tlsty said, &ldquois not so much why do we get cancer as why don&rsquot we get cancer?&rdquo

The earlier a cell is in its path toward an aggressive cancer, researchers say, the more likely it is to reverse course and go back to being healthy again. So, for example, cells that are early precursors of cervical cancer are likely to revert. One study found that 60% of precancerous cervical cells, found with Pap tests, revert to normal within a year 90% revert within three years.

There are certain physical properties of cells that change that make us call them cancerous. Tumor cells display a characteristic set of features that distinguish them from normal cells. All cancer cells acquire the ability to grow and divide in the absence of appropriate signals and/or in the presence of inhibitory signals.

The spread or metastases of cancer is inversely proportional to the amount of oxygen and the acidity around the cancer cells. The more oxygen, the slower the cancer spreads. The less oxygen and the higher the acidity the faster the cancer spreads. If cancer cells get enough oxygen, they will die (cancer cells are anaerobic). If you deprive a group of cells of vital oxygen (their primary source of energy), some will die, but others will manage to alter their genetic software program and mutate and be able to live without oxygen.

When the oxygen level drops below 60%, the respiration process of making energy changes into fermentation in a cancer cell. Normal cells turn cancerous. Normal body cells need oxygen and are aerobic whereas cancer cells do not need oxygen and are anaerobic. Healthy cells metabolize, burn oxygen and glucose to produce ATP.

Dr. Ma Lan and Dr. Joel Wallach point out that one type of white blood cell kills cancer cells by injecting them with oxygen, creating hydrogen peroxide in the cells.

Dr. Luke Curtis is reporting on research that deals with 27 lung &ldquocancer&rdquo patients who were later diagnosed with lung &ldquofungus&rdquo instead of lung cancer. &ldquoFungal infection can present with clinical and radiological features that are indistinguishable from thoracic malignancy, such as lung nodules or masses.&rdquo Doctors who diagnose lung cancer are unaware of the fact that cancer mimics fungal infections.[2]

Over one million people worldwide are misdiagnosed with tuberculosis when in reality they have an incurable disease with a similar outlook to many cancers, says a recent report published in 2011 in the Bulletin of the WHO.[3] The disease called &ldquochronic pulmonary aspergillosis&rdquo (CPA) is a fungal infection not a bacterial infection. Is this incurable, totally drug-resistant TB infection fungal or bacterial? It looks very much like, or is identical to, TB when doctors look at it on a chest X-ray and it has very similar symptoms initially. Doctors mistake it for TB and prescribe antibiotics as standard practice.

Because the X-ray features and symptoms are so similar to bacterial tuberculosis, doctors fail to recognize it, resulting in many unnecessary fatalities. – World Health Organization

50% of all patients who develop pulmonary aspergillosis are unlikely to survive for more than five years, a similar outlook to many cancers. Deaths from fungal infections are a little like death from vaccines, invisible and off the radar from most of the medical establishment. Yet as high as 40% of cancers are provoked by infections, and even though in most late-stage cancers, the infection is fungal the medical profession considers it heresy to say cancer and fungus in the same breath.

According to Dr. Milton White, cancer is &ldquoneither the result of a virus nor the consequence of an inherited gene defect. Cancer is a hybrid. It is due to a plant bacterium (conidia) derived from an Ascomycete strain of fungus…&rdquo

We Better Get the Story Right with Cancer

In Nature we read, &ldquoAlthough viruses and bacteria grab more attention, fungi are the planet&rsquos biggest killers. Of all the pathogens being tracked, fungi have caused more than 70% of the recorded global and regional extinctions, and now threaten amphibians, bats and bees. The Irish potato famine in the 1840s showed just how devastating such pathogens can be. Phytophthora infestans (an organism similar to and often grouped with fungi) wiped out as much as three-quarters of the potato crop in Ireland and led to the death of one million people.&rdquo

Researchers estimate that there are 1.5-5 million species of fungi in the world, but only 100,000 have been identified. Reports of new types of fungal infection in plants and animals have risen nearly tenfold since 1995.

Fungi are dreadful enemies. During their life cycle fungi depend on other living beings, which must be exploited to different degrees for their feeding. Fungi can develop from the hyphae, the more or less beak-shaped specialized structures that allow the penetration of the host. The shape of a fungus is never defined it is imposed by the environment in which the fungus develops. Fungi are capable of implementing an infinite number of modifications to their own metabolism in order to overcome the defense mechanism of the host. These modifications are implemented through plasmatic and biochemical actions as well as by a volumetric increase (hypertrophy) and numerical hyperplasia[4] of the cells that have been attacked.

In 1999, Meinolf Karthaus, MD watched three different children with leukemia suddenly go into remission upon receiving a triple antifungal drug cocktail for their &ldquosecondary&rdquo fungal infections.[5]

Doctors and Dentists at Fault

Dr. Elmer Cranton, says that, &ldquoYeast overgrowth is partly iatrogenic (caused by the medical profession) and can be caused by antibiotics.&rdquo

Fungi (e.g.Aspergillus fumigatus) are not affected by antibiotics and neither are viruses. If not given correct treatment (antifungal medication) the prognosis is that 50% of those infected will die inside five years. In fact the overuse of antibiotics leads to fungal infections. Allopathic doctors practicing pharmaceutical medicine are a lost cause now that the world of pathogens is rebelling against what they have been doing with antibiotics these past decades.

When fungi become systemic from gut inflammation and the overuse of antibiotics, you can see how the whole body—again, the eyes, liver, gallbladder, muscles and joints, kidneys, and skin—becomes involved in inflammatory bowel disease. – Dr. Dave Holland

Heavy metals create contaminated environments both inside and outside the cells. These environments attract all kinds of pathogens—viruses, bacteria and fungi. Many cancers are caused by infections, which are themselves caused by heavy metal contamination. According to the observations made by the internationally recognized medical researcher, Dr. Yoshiaki Omura, all cancer cells have mercury in them. The single greatest source of mercury contamination is mercury containing dental amalgum and doctors around the world still inject children with mercury containing vaccines.

Each year in the U.S. an estimated 40 tons of mercury are used to prepare mercury-amalgam dental restorations. Scientific studies have concluded that the amalgam is the source for more than two thirds of the mercury in our human population. On a daily basis each amalgam releases on the order of 10 micrograms of mercury into the body. This mercury either accumulates in the body or is excreted via urine and feces into our wastewater systems.

Extremely Dangerous

&ldquoFungal infections cannot only be extremely contagious, but they also go hand in hand with leukemia—every oncologist knows this. And these infections are devastating: once a child who has become a bone marrow transplant recipient gets a &ldquosecondary&rdquo fungal infection, his chances of living, despite all the anti-fungals in the world, are only 20%, at best,&rdquo writes Dr. David Holland.

The day I wrote this, a young lady phoned into my syndicated radio talk show. Her three-year-old daughter was diagnosed last year with leukemia. She believes antifungal drugs and natural immune system therapy has been responsible for saving her daughter&rsquos life. She is now telling others with cancer about her daughter&rsquos case. After hearing her story, a friend of hers with bone cancer asked her doctor for a prescriptive antifungal drug. To her delight, this medication, meant to eradicate fungus, was also eradicating her cancer. She dared not share this with her physician, telling him only that the antifungal medication was for a &ldquoyeast&rdquo infection. When she could no longer get the antifungal medication, the cancer immediately grew back. Her physician contended that a few antifungal pills surely should have cured her yeast infection. It is my contention, however, that the reason this medication worked was because she did have a yeast infection not a vaginal infection for which this medication was prescribed a fungal infection of the bone that may have been mimicking bone cancer.

A medical textbook used to educate Johns Hopkins medical students in 1957, Clinical and Immunologic Aspects of Fungous Diseases, declared that many fungal conditions look exactly like cancer! – Doug A. Kaufmann
The Germ That Causes Cancer

Cancer is a biologically-induced
spore (fungus) transformation disease. – Dr. Milton W. White

&ldquoTumor-inducing cells have many of the properties of stem cells,&rdquo said Dr. Michael F. Clarke, a professor at the University of Michigan Cancer Center. &ldquoThey make copies of themselves—a process called self-renewal—and produce all the other kinds of cells in the original tumor.&rdquo[6]

According to the Mayo Clinic, cancer refers to any one of a large number of diseases characterized by the development of abnormal cells that divide uncontrollably and have the ability to infiltrate and destroy normal body tissue.

Our DNA is like a set of instructions for our cells, telling them how to grow and divide. Normal cells often develop mutations in their DNA, but they have the ability to repair most of these mutations. Or, if they can&rsquot make the repairs, the cells frequently die. However, certain mutations aren&rsquot repaired, causing the cells to grow and become cancerous…or so the story goes. Yeasts and fungi are, in human terms, abnormal cells that divide uncontrollably and have the ability to infiltrate and destroy normal body tissue. We know so little about these terrible invaders but oncologist&rsquos think they understand a lot about cancer even though they have not cured it.

The shape of the fungus is never defined it is imposed by the environment in which the fungus develops.

&ldquoIn some cases, the aggressive power of fungi is so great as to allow it, with only a cellular ring made up of three units, to tighten in its grip, capture and kill its prey in a short time notwithstanding the prey&rsquos desperate struggling. Fungus, which is the most powerful and the most organized micro-organism known, seems to be an extremely logical candidate as a cause of neoplastic proliferation, Dr.Tullio Simoncini says, &ldquoCandida albicans clearly emerges as the sole candidate for tumoral proliferation.&rdquo

Face the Fungi

Fungi&rsquos relationship to disease remains a difficult and controversial topic and is not really popular with doctors who hold tightly to their antibiotics and obsession with bacteria and viruses. Mainstream orthodox medicine misses the boat entirely on the treatment of fungi, yeast and molds with both the cancer and diabetes establishments &ldquostandards of care&rdquo lacking antifungal medications.

A new area of research being driven by Dundee life scientists is revealing remarkable abilities of fungi to interact with minerals and metals. Led by Professor Geoffrey Gadd in the College of Life Sciences, the research explores the unique taste that fungi seems to have for rock and heavy metal.[7] This environmental science has demonstrated the incredible power of fungi, to eat through concrete and to absorb heavy metals such as mercury and uranium in the environment.

What no one has thought of until now, is the possibility that fungi may have a stealth mode or several stealth modes with one of them being subversion through DNA convergence.

New Theory Unveiled

Cryptococcus neoformans is a fungus that &ldquoescapes phagocytosis because the spores are surrounded by a thick viscous capsule.&rdquo In the case of histoplasma capsulatum, which itself is a sac fungus, when confronted by the macrophages, they ingest the fungus, but instead of killing it and digesting it, something else can take place.

The white cells can end up protecting the fungus and its DNA as &ldquofriend&rdquo because it has been incorporated inside the macrophages effectively hiding the invader from our other immune defenses. Unfortunately for us fungal cells always become the dominant cells.

An entirely new way of looking at the relationship between cancer and fungus is seeing that cancer begins when the DNA from Fungus and the DNA from our white blood cells merge to form a new hybrid &ldquotumor, or sac.&rdquo This hybrid attains a life of it&rsquos own now, bypassing our immune defenses because it is 50% human, and therefore just enough to be recognized as &ldquoself.&rdquo

A large and significant number of independent cancer researchers, scientists, microbiologists and prominent medical practitioners over the past 100 years have found overwhelming evidence supporting this cancer-fungus link or link between cancer and microbes in general. Microbes have always been found to be present in cancer/tumor cells. There is nothing unusual or new about this but don&rsquot try to talk to your oncologist about any of this for I can assure you the odds are high that he or she will not want to know.

The Vitally Important p53 Gene

Along with phagocytosis, our p53 gene plays one of the most important roles in protecting us against cancer. It not only stops cancer invasion, but it also kills tumor cells, thereby preventing cancer from even starting. But in over 50% of all cancers, scientists have discovered that the patient&rsquos p53 gene was mutated and unable to stop cancer from initiating. According to the American Cancer Society, the p53 gene is the most studied of all genes because damage to this gene allows cells with damaged DNA, like cancer cells, to proliferate.

&ldquoAflatoxin genotoxicity is associated with a defective DNA damage response bypassing p53 activation.&rdquo This means that the mycotoxin, aflatoxin, found in our food supply, is capable of inactivating the p53 gene. The Proceedings of the National Academy of Science stated in 1993, that the mycotoxin, aflatoxin b1, made by Aspergillus fungus, is known to cause p53 mutations. Mycotoxins, made by fungi, are among the most carcinogenic substances known to science.

The Aspergillus mold toxin, aflatoxin B1, inhibits the breakdown of both glucose, or simple sugar, and glycogen.[8] Fungi and the mycotoxins they produce impacts our genetic code, causing alterations that are found in a majority of cancers, reports Doug Kaufman. &ldquoAltering a cell&rsquos DNA amounts to changing the environmental code of that cell. Once changed the cell may respond differently – or not at all to outside hormones and enzymes that normally stimulate it to perform necessary functions. As one example of genetic alteration, aflatoxin B1 causes a break in DNA that alters the p53 tumor expression gene. Changes in this particular gene allow the cell to proliferate out of control. So it&rsquos no accident that this same mycotoxin can also go on to cause liver cancer&rdquo

Fungi and their mycotoxins manipulate their hosts on the cellular level, and prevent us from defending ourselves by subverting the immune system[9].

Fungi are found in foods that we eat every day.[10] Our primary concern is the long-term effects of ingesting food contaminated with low levels of mycotoxins," and that carcinogenic toxins, such as aflatoxin, a by-product of the Aspergillus molds, is a "common contaminant of peanuts, soybeans, grains and cassava. It’s a "frequent contaminant of wheat and corn." Without a properly-functioning immune system, we’re at risk of succumbing to various infectious and chronic diseases. Fungi invade our grain food supply because grains-a source of carbohydrates-are their favorite food.

Fungi are parasites whose mission is to invade a larger host. Given a chance they will alter our body chemistries to suit their needs.

In their refutation of the theory of autoimmunity Kaufman and Holland[11] explain that in Type 1 diabetes it is entirely plausible that invading fungi have altered beta cells, remained undetected, yet set off the body&rsquos immune defense system, which is unable to destroy the offending fungi allowing them to continue to invade other beta cells and progressively lead to total destruction and a complete lack of insulin. The extremely manipulative ways that fungi work to ensure their own food supply is highly characteristic of their nature.

A recent Japanese study suggests that fungal mold toxins have the ability to signal the beta cells in the pancreas to shut them off by killing them.[12]

A.V. Constantini, MD, former head of the WHO Collaborating Center for Mycotoxins in Food has spent 20 years studying and collecting data on the role fungi and mycotoxins play in devastating diseases. In his research he found a number of fungi that demonstrate specific toxicity to the pancreas.

Candida A

When fungal colonization and mycotoxin contamination is maximal one finds cancer
growing and mestastizing at a maximal rate.

Beating Back Late Stage Infections (Cancer & Fungus) with Sodium Bicarbonate

Sodium bicarbonate acts as a powerful, natural and safe antifungal agent,[13] which when combined with iodine, would probably cover the entire spectrum of microbial organisms. The efficacy of sodium bicarbonate against certain bacteria and fungi[14] has been documented. Its role as a disinfectant against viruses, however, is not generally known. Sodium bicarbonate at concentrations of 5% and above was found to be effective with 99.99% reduction viral titers on food contact surfaces within a contact time of 1 min.[15]

It was not until oncologist Dr. Tullio Simoncini came along that the concept arose that cancer can be treated with sodium bicarbonate. My book Sodium Bicarbonate, Rich Man&rsquos Poor Man&rsquos Cancer Treatment continues to be the only medical bible on this subject.

Over 90, 000 people a year die from secondary infections in hospitals.

In my Natural Allopathic protocol we approach the problem of cancer and fungal infections from a number of different angles. When it comes to dealing with pathogenic microbes we want to take them head on. If we eliminate these microbes we lighten the load on the immune system so it can do its job of eliminating cancer.

Immune systems are normally, in late stage cancer patients, choking on these harmful microbes. When we rid patients of these microbes the immune system immediately begins to be supercharged. Many have experimented through past decades of passing small electric currents and high frequencies through people and have seen anti-pathogenic effects with viruses, bacteria and fungi.

What we are talking about here fits the military tactics that Natural Allopathic Medicine employs when facing off against cancer. A platoon of white cells are sent to rescue hostages (organs overrun by cancer), but en route get pinned down by heavy fire from ground forces (parasites, viruses, fungi and bacteria tying up the immune system). Then air support (magnesium, bioresonance treatments, iodine, CBD and sodium bicarbonate) come and obliterate the ground forces leaving the platoon (immune system agents) free to go and recover hostages (us). We also directly increase immune system strength using far infrared treatments that raise core body temperature.


These consensus guidelines are an update of the 2013 WSES position paper on this topic. To create these guidelines, a panel of experts was designed and charged by the board of the WSES to develop questions on six main topics that thoroughly cover the field of this pathology (diagnosis, resuscitation, nonoperative management, surgery, angiography-angioembolization, antimicrobial therapy). Then, leading specialists in the field were asked to perform a thorough search on each of these topics in different databanks (MEDLINE, SCOPUS, EMBASE) for relevant papers between 1985 and June 2018 and a systematic review of the available literature. They were asked to focus their search in order to provide evidence-based answers to every question with immediate practical application and to summarize them in statements. All the statements were presented and discussed during the 5 th WSES Congress held in Bertinoro, Italy in June 28th, 2018. For each statement, a consensus among the WSES panel of experts was reached. All the members contributed to the development of the manuscript the manuscript was reviewed and approved by all the authors.

The present guidelines have been developed according to the GRADE methodology [12, 13].

Topics and questions

For clarity, we report the six topics together with the questions dividend into each of them.


In patients with a suspected perforated peptic ulcer, which are the appropriate biochemical and imaging investigations that should be requested?

In patients with perforated peptic ulcer, what is the clinical value of risk scores such as Boey Score and Pulp score?

In patients with suspected bleeding peptic ulcer, which biochemical and imaging investigations should be requested?

In patients with suspected bleeding peptic ulcer, what is the diagnostic role of endoscopy?

In patients with bleeding peptic ulcer, are the endoscopic findings useful to determine the risk for rebleeding and how do they affect the clinical management?


In patients with perforated peptic ulcer, which parameters should be evaluated ad ED referral?

In patients with perforated peptic ulcer, which are the appropriate targets for resuscitation (hemoglobin level, blood pressure/heart rate, lactates level, others)?

In patients with bleeding peptic ulcer, which parameters should be evaluated at ED referral and which criteria should be adopted to define an unstable patient?

In patients with bleeding peptic ulcer, which are the appropriate targets for resuscitation (hemoglobin level, blood pressure/heart rate, lactates level, others)?

Non-operative management—endoscopic treatment

In patients with perforated peptic ulcer, which are the indications for non-operative management?

In patients with perforated peptic ulcer, is there a role for endoscopic treatment?

In patients with bleeding peptic ulcer, which are the indications for non-operative management?

In patients with bleeding peptic ulcer, which are the indications for endoscopic treatment?

In patients with bleeding peptic ulcer, what is the appropriate pharmacological regimen (Erythromycin, PPI, terlipressin, others)?

In patients with recurrent bleeding from peptic ulcer, what is the role of non-operative management?


In patients with bleeding peptic ulcer, which are the indications for angiography?

In patients with bleeding peptic ulcer, which are the indications for angioembolization?

Should embolization be considered for unstable patients with bleeding peptic ulcer?

In patients with recurrent bleeding peptic ulcer, which are the indications for angioembolization?

In patients who underwent angioembolization, which are the most appropriate embolization techniques and materials?

In patients with bleeding peptic ulcer and non-evident bleeding during angiography is there a role for prophylactic embolization?


In patients with perforated peptic ulcer, which are the indications for surgical treatment and what is the appropriate timing for surgery?

In patients with perforated peptic ulcer what is the most appropriate surgical approach (open vs laparoscopy)?

In patients with perforated peptic is there a role for sutureless repair?

In patients with perforated peptic ulcer and small perforation (< 2 cm), which surgical procedure should be adopted?

In patients with perforated peptic ulcer and large perforation (≥ 2 cm), which surgical procedure should be adopted?

In patients with perforated peptic ulcer, what is the role of damage control surgery?

In patients with bleeding peptic ulcer, which are the indications for surgical treatment and which is the appropriate timing for surgery?

In patients with bleeding peptic ulcer, what is the most appropriate surgical approach (open vs laparoscopy) and what are the most appropriate surgical procedures?

In patients with bleeding peptic ulcer, what is the role of damage control surgery?

Antimicrobial therapy

Should antibiotic therapy be prescribed and should anti-fungal therapy be administrated empirically in patients with perforated peptic ulcer?

In patients with perforated peptic ulcer, which antimicrobial regimen should be used and what is its correct duration?

In patients with bleeding peptic ulcer, which are the indications for antimicrobial therapy and for Helicobacter pylori testing?

In patients with bleeding peptic ulcer and positive tests for H. pylori infection, which are the therapeutic options?

Pneumocystis pneumonia

Pneumocystis pneumonia, called PCP, is caused by the fungus Pneumocystis jirovecii. The fungus is spread through the air, from person to person. PCP is extremely rare in healthy people, but the fungus that causes the disease can live in their lungs without causing symptoms. Individuals with weakened immune systems, such as people with HIV/AIDS, cancer patients, and people with inflammatory or autoimmune diseases taking certain medications that weaken the immune system, are at greatest risk for serious PCP infections requiring treatment.

NIAID-supported researchers are developing new diagnostics and therapies to treat PCP.

Watch the video: Poultry Diseases: Fungal Infections. Dr. Zaid Yaseen 2020 (February 2023).